在现代计算机架构中,算力的瓶颈主要来源于哪些方面?在解决算力瓶颈问题时,有哪些创新的技术和协议被采用?
算力是现代计算机技术的核心,其瓶颈主要存在于数据传输和存储方面。目前,计算机普遍采用冯诺依曼架构,数据存储和数据计算分开,算力容易被卡在数据传输,而非真正的计算。算力分为四层,每一层都需要解决如何让数据连接更快的问题。
1、GPU内部
GPU内部的计算单元与显存之间的数据传输是性能提升的瓶颈,同时多个GPU间的协同计算也受到数据传输速度的限制。传统GPU通常采用GDDR内存,这种内存是平面封装,导致数据传输速度跟不上GPU的计算速度。为解决这一问题,升级后的方案采用HBM内存技术。HBM内存是垂直封装,能够提供更大的带宽,从而将数据更快地传输到GPU的计算单元中。例如,HBM2的带宽高达256GB/s,比传统的GDDR内存快十倍以上。
2、AI服务器
每台AI服务器都由多个GPU组成(4个、8个甚至更多),GPU需要进行协同计算。然而,它们之间的数据传输速度成为性能的瓶颈。在这方面,英伟达GPU连接技术最为先进,使用的是其NVLink协议,每秒传输速度高达50GB。华为也拥有自己的HCCS协议,带宽表现不错,每秒30GB,与英伟达没有量级的差异。然而,其他传统的服务器只采用PCIe 5标准接口,每通道传输速度只有4GB,不到英伟达的十分之一。因此,为提高数据传输速度并解决该瓶颈问题,需要采用更先进的技术和协议。
3、数据中心
数据中心由上百甚至上千台AI服务器组成计算集群,服务器之间需要快速的数据连接。英伟达采用专用的InfiniBand网络,而其他厂商则使用ROC高速以太网网络。尽管这两种网络在物理层都使用光纤连接,但都离不开光模块。无论是数据发送还是接收,无论是服务器端还是交换机端,都需要光模块。今年,光模块的技术从400G升级到800G,因为国内厂商在光模块制造领域的占比很高,因此这一块的业绩能够真正实现,导致光模块技术在算力领域被炒作得最多。
4、数据网络
不同地点和城市的数据中心可以组成一个庞大的算力网络,通过调度和统筹,终端用户轻松地使用最快且最便宜的算力资源。目前,算力网络的发展趋势是采用云-边-端的架构,旨在解决数据传输的问题。其中,边缘计算是最为热门的技术之一。边缘计算并不仅仅是指手机和智能车辆,而是指在传统的云计算中心之外,更靠近终端地方增加一层直接计算能力,以节省数据传输的成本和时间。因此,未来的大趋势是云的AI算力、边缘的AI算力和用户端的AI算力相互结合,共同推动人工智能技术的发展。
蓝海大脑深度学习大数据平台是面向多源空间数据的处理平台,集成存储、计算和数据处理软件,具有高效、易操作、低成本、多层次扩展和快速部署等显著优势,在测绘、农业、林业、水利、环保等领域大大提升图像处理能力,保护投资,高效应对大数据挑战,加速业务突破和转型。蓝海大脑PC集群解决方案提供高密度部署的服务器和PC节点,采用机架式设计,融合了PC的高主频和高性价比以及服务器的稳定性的设计,实现了远程集中化部署和管理运维。同时,采用模块化可插拔设计,使维护和升级变得更加容易。
蓝海大脑 京ICP备18017748号-1